1 package MathUtil; 2 # 3 # File: MathUtil.pm 4 # Author: Manish Sud <msud@san.rr.com> 5 # 6 # Copyright (C) 2025 Manish Sud. All rights reserved. 7 # 8 # This file is part of MayaChemTools. 9 # 10 # MayaChemTools is free software; you can redistribute it and/or modify it under 11 # the terms of the GNU Lesser General Public License as published by the Free 12 # Software Foundation; either version 3 of the License, or (at your option) any 13 # later version. 14 # 15 # MayaChemTools is distributed in the hope that it will be useful, but without 16 # any warranty; without even the implied warranty of merchantability of fitness 17 # for a particular purpose. See the GNU Lesser General Public License for more 18 # details. 19 # 20 # You should have received a copy of the GNU Lesser General Public License 21 # along with MayaChemTools; if not, see <http://www.gnu.org/licenses/> or 22 # write to the Free Software Foundation Inc., 59 Temple Place, Suite 330, 23 # Boston, MA, 02111-1307, USA. 24 # 25 26 use strict; 27 use Exporter; 28 use Constants; 29 use Math::Trig (); 30 use POSIX (); 31 32 use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS); 33 34 @ISA = qw(Exporter); 35 @EXPORT = qw(acos asin atan tan ceil floor log10 min max srandom random round GeneratePrimeNumbersUpToLimit GeneratePrimeNumbersUpToCount); 36 @EXPORT_OK = qw(); 37 38 %EXPORT_TAGS = (all => [@EXPORT, @EXPORT_OK] 39 ); 40 41 42 # Return next largest integer... 43 sub ceil ($) { 44 my($Value) = @_; 45 46 return POSIX::ceil($Value); 47 } 48 49 # Return previous smallest integer... 50 sub floor ($) { 51 my($Value) = @_; 52 53 return POSIX::floor($Value); 54 } 55 56 # Calculate log value using base 10... 57 sub log10 ($) { 58 my($Value) = @_; 59 60 return CORE::log($Value)/CORE::log(10); 61 } 62 63 # Return the smaller of two numbers... 64 sub min ($$) { 65 my($Value1, $Value2) = @_; 66 67 return ($Value1 <= $Value2) ? $Value1 : $Value2; 68 } 69 70 # Return the larger of two numbers... 71 sub max ($$) { 72 my($Value1, $Value2) = @_; 73 74 return ($Value1 >= $Value2) ? $Value1 : $Value2; 75 } 76 77 # The random number generator implemented in MayaChemTools is a variant of linear 78 # congruential generator (LCG) as described by Miller et al. [ Ref 120 ]. It is 79 # also referred to as Lehmer random number generator or Park-Miller random number 80 # generator. 81 # 82 # Unlike Perl's core random number generator function rand, the random number 83 # generator implemented in MayaChemTools generates consistent random values 84 # across different platforms - Windows, CygWin, Linux, Unix - for a specific random 85 # seed. 86 # 87 88 # $RandomModulus = 2**31 - 1; 89 # $RandomMultiplier = 16807; 90 # $RandomQuotient = $RandomModulus / $RandomMultiplier; 91 # $RandomRemainder = $RandomModulus % $RandomMultiplier 92 # 93 # $MaxRandomSeed = 2*31 -2 94 # 95 my($MaxRandomSeed, $RandomSeed, $RandomModulus, $RandomMultiplier, $RandomQuotient, $RandomRemainder); 96 97 $MaxRandomSeed = 2147483646; 98 $RandomSeed = 123456789; 99 100 $RandomModulus = 2147483647; 101 $RandomMultiplier = 16807; 102 $RandomQuotient = 127773; 103 $RandomRemainder = 2836; 104 105 # Set random number seed... 106 # 107 # The intial value of random number seed is recommeded to be an integer between 1 108 # and 2**31 - 2 [Ref 120] which translates to be 1 and 2147483646 109 # 110 sub srandom ($) { 111 my($Seed) = @_; 112 113 if ($Seed <= 0 ) { 114 die "Error: srandom: Specified seed value must be greater than 0..."; 115 } 116 117 $RandomSeed = ($Seed > $MaxRandomSeed) ? ($Seed % $MaxRandomSeed) : $Seed; 118 119 return $RandomSeed; 120 } 121 122 # Retrun a random number between 0 and less than 1 or specified size... 123 # 124 sub random (;$) { 125 my($Size) = @_; 126 my($Value, $LowValue, $HighValue); 127 128 $Size = defined $Size ? $Size : 1.0; 129 130 $HighValue = $RandomSeed / $RandomQuotient; 131 $LowValue = $RandomSeed % $RandomQuotient; 132 133 $Value = $RandomMultiplier * $LowValue - $RandomRemainder * $HighValue; 134 135 $RandomSeed = ($Value > 0) ? $Value : ($Value + $RandomModulus); 136 137 return ($RandomSeed / $RandomModulus) * $Size; 138 } 139 140 # Round a integer/real number to: 141 # . A nearest integer 142 # . Specified number of decimal places 143 # 144 sub round ($;$) { 145 my($Value, $DecimalPlaces) = @_; 146 my($RoundedValue); 147 148 if (defined($DecimalPlaces) && $DecimalPlaces > 0) { 149 $RoundedValue = sprintf "%.${DecimalPlaces}f", $Value; 150 } 151 else { 152 if ($Value < 0) { 153 $RoundedValue = int($Value - 0.5); 154 } 155 else { 156 $RoundedValue = int($Value + 0.5); 157 } 158 } 159 return $RoundedValue; 160 } 161 162 # Return tangent of an angle expressed in radians. 163 sub tan { 164 my($Value) = @_; 165 166 return (CORE::sin($Value)/CORE::cos($Value)); 167 } 168 169 # Return inverse sine of an angle expressed in radians. 170 # 171 # For a right angle triangle defined by sides X and Y in a unit circle, Pythagorean theorem implies 172 # X**2 + Y**2 = 1 and sin value corresponds to Y. So asin is equivalent to atan2(Y, sqrt(1-Y**2)). 173 # However, taking sqrt of negative numbers is problematic; Math::Trig::asin handles it using complex 174 # numbers. 175 # 176 sub asin ($) { 177 my($Value) = @_; 178 179 return Math::Trig::asin($Value); 180 } 181 182 # Return inverse cosine of an angle expressed in radians. 183 # 184 # For a right angle triangle defined by sides X and Y in a unit circle, Pythagorean theorem implies 185 # X**2 + Y**2 = 1 and cos value corresponds to X. So asin is equivalent to atan2(sqrt(1-X**2), X) 186 # However, taking sqrt of negative numbers is problematic; Math::Trig::acos handles it using complex 187 # numbers. 188 # 189 sub acos ($) { 190 my($Value) = @_; 191 192 return Math::Trig::acos($Value); 193 } 194 195 # Generate prime numbers up to a specified limit and return a reference to an 196 # array containing the prime numbers. 197 # 198 # By default, the first 1000 prime numbers are generated. The 1000th prime 199 # number is 7919 and that's why default limit is set to 7920. 200 # 201 sub GeneratePrimeNumbersUpToLimit (;$) { 202 my($Limit) = @_; 203 204 $Limit = defined $Limit ? $Limit : 7920; 205 206 return _GeneratePrimeNumbers('ByLimit', $Limit) 207 } 208 209 # Generate prime numbers up to specified count of prime numbers and return a 210 # reference to an array containing the prime numbers. 211 # 212 # By default, the first 1000 prime numbers are generated. The 1000th prime 213 # number is 7919. 214 # 215 sub GeneratePrimeNumbersUpToCount (;$) { 216 my($Count) = @_; 217 218 $Count = defined $Count ? $Count : 1000; 219 220 return _GeneratePrimeNumbers('ByCount', $Count) 221 } 222 223 # Generate prime numbers up to specified limit or count and return a reference 224 # to an array containing the prime numbers. 225 # 226 # The algorithm to generate prime numbers is a modification of Sieve of Erastothenes 227 # prime number generator. 228 # 229 sub _GeneratePrimeNumbers { 230 my($Mode, $Value) = @_; 231 my($ByLimit, $PrimeNumber, $Number, $SqrtOfNumber, $NumberIsPrime, @PrimeNumbers); 232 233 $ByLimit = ($Mode =~ /^ByLimit$/i) ? 1 : 0; 234 235 @PrimeNumbers = (2, 3); 236 $Number = 3; 237 238 # while ($Number <= $Limit) { 239 while ($ByLimit ? ($Number < $Value) : (@PrimeNumbers < $Value)) { 240 $Number += 2; 241 $SqrtOfNumber = sqrt $Number; 242 243 $NumberIsPrime = 1; 244 PRIMENUMBER: for $PrimeNumber (@PrimeNumbers) { 245 if ($PrimeNumber > $SqrtOfNumber) { 246 last PRIMENUMBER; 247 } 248 if (!($Number % $PrimeNumber)) { 249 $NumberIsPrime = 0; 250 last PRIMENUMBER; 251 } 252 } 253 if ($NumberIsPrime) { 254 push @PrimeNumbers, $Number; 255 } 256 } 257 return \@PrimeNumbers; 258 } 259