1. | Wall, L.; Christiansen, T.; Schwartz, R.L. Programming Perl, 2nd edition. O'Reilly Media Inc., September 1996. | |
2. | CPAN: Comprehensive Perl archive network. | |
3. | FSF: Free software foundation. | |
4. | Knuth, D.E. The art of computer programming. Vol. 1-3. 2nd edition. Addison-Wesley, September 1998. | |
5. | Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipies in C: the art of scientific computing. 2nd edition. Cambridge University Press, 1992. | |
6. | Orwant, J.; MacDonald, J.; Hietaniemi, J. Mastering algorithms with Perl. O'Reilly Media Inc., August 1999. | |
7. | Data for elements in the periodic table. | |
8. | Isotope data for elements in the periodic table. | |
9. | Main data source for amino acids. | |
10. | PerlMol - Perl modules for molecular chemistry. | |
11. | OpenBabel: The open source chemistry toolbox. | |
12. | CDK: The chemistry development kit. | |
13. | JOELIB. | |
14. | CTFile Formats. | |
15. | Conway, D. Object oriented Perl. 1st edition. O'Reilly Media Inc., January 2000. | |
16. | Friedl, J.E.F. Mastering regular expressions. 3rd edition. O'Reilly Media Inc., August 2006. | |
17. | Schulz, G.E.; Schirmer, R.H. Principles of protein structure. Springer-Verlag, January 1997. | |
18. | Saenger, W. Principles of nucleic acid structure. Springer-Verlag, 1983. | |
19. | Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequence. Nucleic Acids Res. 1985, 13, 3021-3030. | |
20. | Clapham, C. A concise Oxford dictionary of mathematics. Oxford University Press, 1990. | |
21. | Cook, J.L. Conversion factors. Oxford University Press, 1993. | |
22. | Pauling, L. The nature of chemical bond. 3rd edition. Cornell University Press, June 1960. | |
23. | Daylight theory manual. | |
24. | Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Am. Chem. Soc. 1988, 28, 31-36. | |
25. | Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Am. Chem. Soc. 1989, 29, 97-101. | |
26. | Weininger, D. SMILES. 3. Depit. Graphical depiction of chemical structures. J. Am. Chem. Soc. 1990, 30, 237-243. | |
27. | OEChem TK manual. | |
28. | Parkin, G. Valence, oxidation number, and formal charge: Three related but fundamentally different concepts. J. Chem. Educ. 2006, 83, 791-799. | |
29. | Gateiger, J.; Jochum, C. An algorithm for the perception of synthetically important rigngs. J. Chem. Inf. Comput. Sci. 1979, 19, 43-47. | |
30. | Balducci, R.; Pearlman, R.S. Efficient exact solution of the ring perception problem. J. Chem. Inf. Comput. Sci. 1994, 34, 822-831. | |
31. | Hanser, T.; Jauffret, P.; Kaufmann, G. A new algorithm for exhaustive ring perception in a molecular graph. J. Chem. Inf. Comput. Sci. 1996, 36, 1146-1152. | |
32. | Cahn, R.S.; Ingold, C.; Prelog, V. Specification of molecular chirality. Angew. Chem. Internat. Edit. 1966, 5, 385-415. | |
33. | Prelog, V.; Helmchen, G. Basic principles of the CIP-system and proposals for revision. Angew. Chem. Internat. Edit. 1982, 21, 567-583. | |
34. | Mata, P.; Lobo, A.M.; Marshall, C.; Johnson, P.A. The CIP seqeunce rules: Analysis and proposal for a revision. Tetrahedron. 1993, 4, 657-668. | |
35. | Nourse, J.G.; Carhart, R.E.; Smith, D.H.; Djerassi, C. Exhaustive generation of stereoisomers for structure elucidation. J. Am. Chem. Soc. 1979, 101, 1216-1223. | |
36. | Nourse, J.G.; Smith, D.H.; Carhart, R.E.; Djerassi, C. Computer-assisted elucidation of molecular structue with stereochemistry. J. Am. Chem. Soc. 1980, 102, 6289-6295. | |
37. | Fused ring systems. | |
38. | A hash function for hash table lookup. | |
39. | Ralaivola, L.; Swamidass, S.J.; Saigo, H.; Baldi, P. Graph kernals for chemical informatics. Neural Networks. 2005, 18, 1093-1110. | |
40. | Willett. P.; Barnard, J.M.; Downs, G.M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996. | |
41. | Holliday, J.D.; Hu, C-Y.; Willett, P. Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings, Combinatorial Chemistry & High Throughput Screening. 2002, Vol. 5, No. 2, 155-166. | |
42. | Flinger, M.; Verducci, J.; Blower, P. A modification of the Jacard-Tanimoto similarity index for diverse selection of chemical compounds using binary strings. Technometrics. 2002, 44, 110-119. | |
43. | Wang, Y.; Bajorath, J. Balancing the influence of molecular complexity in fingerprint similarity searching. J. Chem. Inf. Comput. Sci. 2008, 48, 75-84. | |
44. | Flower, D.R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379-386. | |
45. | The Enkfil.dat and Eksfil.dat files: The keys to understanding MDL keyset technology. | |
46. | Durant, J.L.; Leland, B.A.; Henry, D.H.; Nourse, J.G. Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280. | |
47. | Description of public MACCS keys. | |
48. | Morgan, H.L. The generation of a unique machine description for chemical structures - A technique developed at chemical abstracts service. J. Chem. Doc. 1965, 5, 107-112. | |
49. | Penny, R.H. A connectivity code for use in describing chemical structures. J. Chem. Doc. 1965, 5, 113-117. J. Chem. Doc. 1973, 3, 153-157. | |
50. | Adamson, G.W.; Cowell, J.; Lynch, M.F.; McLure, A.H.; Town, W.G. Yapp, M. Strategic considerations in design of a screening system for substructure searches of chemical structure files. | |
51. | Wipke, W.T.; Krishnan, S.; Ouchi, G.I. Hash functions for rapid storage and retrieval of chemical structures. J. Chem. Inf. Comput. Sci. 2002, 42, 1273-1280. 1978, 18, 31- . | |
52. | Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Mod. 2010, 50, 742-754. | |
53. | Faulon, J.-L.; Visco, D.P., Jr.; Pophale, R.S. The Signature Molecular Descriptor. 1. Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 2003, 43, 707-720. | |
54. | Faulon, J.-L.; Collins, M.J.; Carr, R.D. The signature molecular descriptor. 4. Canonizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 2004, 44, 427-436. | |
55. | Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naive bayesian classifier. J. Chem. Inf. Comput. Sci. 2004, 44, 170-178. | |
56. | Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of performance. J. Chem. Inf. Comput. Sci. 2004, 44, 1708-1718. | |
57. | Carhart, R.E.; Smith, D.H.; Venkataraghavan, R. Atom pairs as molecular features in structure-activity studies: Definition and application. J. Chem. Inf. Comput. Sci. 1985, 25, 64-73. | |
58. | Nilakantan, R.; Bauman, N.; Dixon, J.S.; Venkataraghavan, R. Topological torsion: A new molecular descriptor for SAR applications. Comparison with other descriptors. J. Chem. Inf. Comput. Sci. 1987, 27, 82-85. | |
59. | Langham, J.L.; Jain, A.N. Accurate and interpretable computational modeling of chemical mutagenicity. J. Chem. Inf. Comput. Sci. 2008, 48, 1833-1839. | |
60. | Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. Scaffold-hopping by topological pharmacophore search: A contribution to virtual screening. Angew. Chem. Int. Ed. 1999, 38, 2894-2896. | |
61. | Fechner, U.; Franke, L.; Renner, S.; Schneider, P. Schneider, G. Comparison of correlation vector methods for ligand-based similarity searching. J. Comput. Aided Mol. Des. 2003, 17, 687-698. | |
62. | Fechner, U.; Schneider, G. Evaluation of distance metrics for ligand-based similarity searching. ChemBioChem. 2004, 5, 538-540. | |
63. | Downs, G.M.; Willett, P.; Fisanick, W. Similarity searching and clustering of chemical-structure databases using molecular property data. J. Chem. Inf. Comput. Sci., 1994, 34, 1094-1102. | |
64. | Chen, X.; Reynolds, C.H.; Performance of similarity measures in 2D fragment-based similarity searching: Comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 2002, 42, 1407-1414. | |
65. | Steffen, R.; Fechner, U.; Schneider, G. Alignment-free pharmacophore patterns: A correlation-vector approach. Pharmacophores and pharmacophore searches. 2006. Volume 32. Wiley-VCH. 49-80. | |
66. | McGregor, M.J.; Muskal, S. M. Pharmacophore fingerprinting. 1. Application to QSAR and focused library design. J. Chem. Inf. Comput. Sci. 1999, 39, 569-574. | |
67. | Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM. 1962, 5, 345. | |
68. | Horvath, D. Topological pharmacophores. Cheminformatics approaches to virtual screening. 2008. RSC Publishing. 44-75. | |
69. | Ewing, T.; Baber, C.; Feher, M. Novel 2D fingerprints in ligand-based virtual screening. J. Chem. Inf. Model. 2006, 46, 2423-2431. | |
70. | Watson, P. Naive Bayes classification using 2D pharmacophore feature triplet vectors. J. Chem. Inf. Model. 2008, 48, 166-178 | |
71. | Bonachera, F.; Parent, B.; Barbosa, F.; Froloff, N.; Horvath, D. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes. J. Chem. Inf. Model., 2006, 46, 2457-2477. | |
72. | Kearsley, S.K.; Sallamack, S.; Fluder, E.M.; Andose, J.D.; Mosley, R.T.; Sheridan, R.P. Chemical Similarity Using Physiochemical Property Descriptors.J. Chem. Inf. Comput. Sci., 1996, 36, 118-127. | |
73. | Filimonov, D.; Poroikov, V.; Borodina, Y.; Gloriozova, T. Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other Descriptors. J. Chem. Inf. Comput. Sci., 1999, 39, 666-670. | |
74. | RDKit - Cheminformatics and Machine Learning Software. | |
75. | Kier, L.B.; Hall, L.H. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039-1045. | |
76. | Kier, L.B.; Hall, L.H. Molecular structure description - The electrotopological state. Academic Press, 1999. | |
77. | Molconn-Z - Program for generation of Molecular Connectivity, Shape, and Information Indices. | |
78. | Kier, L.B.; Hall, L.H. The E-State as the basis for molecular structure space definition and structure similarity. J. Chem. Inf. Comput. Sci. 2000, 40, 784-791. | |
79. | SYBYL atom types. | |
80. | Clark, M.; Cramer III, R.D.; Opdenbosch, N.V. Validation of the general purpose Tripos 5.2 forcefield. J. Comput. Chem. 1989, 10, 982-1012. | |
81. | Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard III, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035. | |
82. | Rappe, A. K. Personal communication. 2009. | |
83. | Halgren, T.A.; Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. 1996, J. Comput. Chem., 17, 490-519. | |
84. | Halgren, T.A.; Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Compt. Chem. 1996, 17, 520-552. | |
85. | Halgren, T.A.; Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Compt. Chem. 1996, 17, 553-586. | |
86. | Halgren, T.A.; Nachbar, R. B.; Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Compt. Chem. 1996, 17, 587-615. | |
87. | Halgren, T.A.; Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Compt. Chem. 1996, 17, 616-641. | |
88. | Mayo, S.L.; Olafson, B.A.; Goddard III, W.A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94, 8897-8909. | |
89. | Wildman, S.A.; Crippen, G.M.; Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868-873. | |
90. | Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport Properties. J. Med. Chem. 2000, 43, 3714-3717. | |
91. | Ertl, P. Personal communication. 2010. | |
92. | Veber, D.F.; Johnson, S. R.; Chend, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2165-2623. | |
91. | Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Del. Rev. 1997, 23, 3-25. | |
92. | Congreve M.; Carr R., Murray C., Jhoti H.A. 'rule of three' for fragment-based lead discovery? Drug. Discov. Today. 2003, 8, 876-877. | |
93. | Zhao, Y.H.; Abraham, M.H.; Zissimos, A.M. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J. Org. Chem. 2003, 68, 7368-7373. | |
94. | Chen, J.; Holliday, J.; Bradshaw, J.A machine learning approach to weighting schemes in the data fusion of similarity coefficients. J. Chem. Inf. Model. 2009, 49, 185-194. | |
95. | Williams, C. Reverse fingerprinting, similarity searching by group fusion and fingerprint bit importance. Molecular Diversity. 2006, 10, 311-332. | |
96. | Whittle, M.; Gillet, V.J.; Willett, P.; Loesel, J. Analysis of data fusion methods in virtual screening: Similarity and group Fusion. J. Chem. Inf. Model. 2006, 46, 2206-2219. | |
97. | Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 2006, 46, 462-470. | |
98. | Chu, C-W.; Holliday, J.D.; Willett, P. Effect of data standardization on chemical clustering and similarity searching. J. Chem. Inf. Model., 2009, 49, 155-161. | |
99. | Arif, S.M.; Holliday, J.D.; Willett, P. Inverse frequency weighting of fragments for similarity-based virtual screening. J. Chem. Inf. Model., 2010, 50, 1340-1349. | |
100. | Chen, B.; Mueller, C.; Willett, P. Combinations rules for group fusion in similarity-based virtual screening. Mol. Inf. 2010, 29, 533-541. | |
101. | Willett, P.; Similarity searching using 2D structural fingerprints. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 133-58. | |
102. | Berglund, A.E.; Head, R.D. PZIM: A method for similarity searching using atom environments and 2d alignment. J. Chem. Inf. Model. 2010, 50, 1790-1795. | |
103. | Baldi, P.; Nasr, R. When is chemical similarity significant? The statistical distribution of chemical similarity scores and its extreme values. J. Chem. Inf. Model. 2010, 50, 1205-1222. | |
104. | Godden, J.W.; Stahura, F.L,; Bajorath, J. Anatomy of fingerprint search calculations on structurally diverse sets of active compounds. J. Chem. Inf. Model. 2005, 45, 1812-1819. | |
105. | Geppert, H.; Horvath, T.; Gartner, T.; Wrobel, S.; Bajorath, J. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds. J. Chem. Inf. Model. 2008, 48, 742-746. | |
106. | Wang, Y.; Geppert, H.; Bajorath, J. Shannon entropy-based fingerprint similarity search strategy. J. Chem. Inf. Model., 2009, 49, 1687-1691. | |
107. | Nisius, B.; Bajorath, J. Molecular fingerprint recombination: Generating hybrid fingerprints for similarity searching from different fingerprint types. ChemMedChem. 2009, 4, 1859-1863. | |
108. | Vogt, M.; Bajorath, J. Predicting the Performance of Fingerprint Similarity Searching. Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology. 2011, 672, 159-173. | |
109. | Muchmore, S.W.; Debe, D.A.; Metz, J.T.; Brown, S.P.; Martin, Y. .; Hajduk, P. H. Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J. Chem. Inf. Model. 2008, 48, 941-948. | |
110. | Bender, A.; Jenkins, J.L.; Scheiber, J.; Sukuru, S.C.K.; Glick, M.; Davies, J. W. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J. Chem. Inf. Model. 2009, 49, 108-119. | |
111. | Sastry, M.; Lowrie, J.F.; Dixon, S.L.; Sherman, W. Large-scale sstematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 2010, 50, 771-784. | |
112. | Tiikkainen, P.; Markt, P.; Wolber, G.; Kirchmair, J.; Distinto, S.; Poso, A.; Kallioniemi. O. Critical comparison of virtual screening methods against the MUV data set. J. Chem. Inf. Model., 2009, 49, 2168-2178. | |
113. | Venkatraman, V.; Prez-Nueno, V. I.; Mavridis L.; Ritchie, D.W. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods. J. Chem. Inf. Model., 2010, 50, 2079-2093. | |
114. | Chemfp - Cheminformatics fingerprints file formats and tools. | |
115. | Yan, A.; Gasteiger, J.; Prediction of aqueous solubility of organic compounds by topological descriptors. QSAR Comb Sci. 2003, 22, 821-829. | |
116. | Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752-6756. | |
117. | Hann, M.M.; Leach, A.R.; Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856-864. | |
118. | Schuffenhauer, S.; Brown, N.; Selzer, P.; Ertl, P.; Jacoby, E. Relationships between molecular complexity, biological activity, and structural diversity. J. Chem. Inf. Model., 2006, 46, 525-535. | |
119. | Walters, W.P.; Green, J.; Weiss, J.R.; Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 2011, 54, 6405-6416. | |
120. | Park, S.K.; Miller, K.W. Random number generators: Good ones are hard to find. Communications of the ACM. 1998, 10, 1192- 1200. | |
121. | Huang R.; Southall N.; Wang Y.; Yasgar A.; Shinn P.; Jadhav A.; Nguyen D. T.; Austin C. P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med. 2011, 80ps16. | |
122. | Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research. 2000, 28, 235-242. | |
123. | Jmol: An open-source Java viewer for chemical structures in 3D. | |
124. | Lloyd, D. What is aromaticity? J. Chem. Inf. Comput. Sci. 1996, 36, 442-447. | |
125. | Sayle, R. Cheminformatics toolkits: A personal perspective. | |
126. | Dominus, M. J. Higher-order Perl. | |
127. | OpenSMILES. | |
128. | Vandermeersch, T. OpenSMARTS. | |
129. | Riniker, S.; Landrum, G. A. Better informed distance geometry: Using what we know to improve conformation generation. JCIM. 2015, 55, 2562-2574. | |
130. | Baell, J. B.; Holloway, G. A. New substructure filters for removal of Pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. JMC. 2010, 53 2719-2740. | |
131. | Baell, J. B.; Nissink, J. W. M. Seven year itch: Pan-assay interference compounds (PAINS) in 2017 - Utility and limitations. ACS Chem. Biol. 2018, 13, 36-44. | |
132. | Tosco, P.; Balle, T.; Shiri F. Open3DALIGN: an open-source software aimed at unsupervised ligand alignment. JCAMD. 2011, 25, 777-783. | |
133. | Bemis, G. W.; Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 1996, 39, 2887-2893. | |
134. | Hartenfeller, M.; Eberle, M; Meier, P.;Nieto-Oberhuber,C.; Altmann, K.H. A collection of robust organic synthesis reactions for In silico molecule design. J. Chem. Inf. Model. 2011, 51, 3093-3098. | |
135. | Ashton, M., Barnard. J.; Casset, F.; Charlton. M.; Downs, G.; Gorse, D.; Holliday, J.; Lahana, R.; Willett, P. Identification of diverse database subsets using property-based and fragment-based molecular descriptors, Quant. Struct.-Act. Relat., 2002. 598-604. | |
136. | Butina, D. Unsupervised database clustering based on Daylight's fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets. J. Chem. Inf. Model. 1999, 39, 747-750. | |
137. | D3R: Drug design data resource. | |
138. | Gasteiger, J.; Marseli, M. Iterative equalization of oribital electronegatiity - A rapid access to atomic charges. Tetrahedron. 1980, 36, 3219-3228. | |
139. | PyMOL - A molecular visualization system on an open source foundation originally developed by Warren DeLano. | |
140. | Hagemans D.; van Belzen I. A. E. M.; Moran Luengo T.; Rudiger S.G.D. A script to highlight hydrophobicity and charge on protein surfaces. Frontiers in Molecular Biosciences. 2015, 2, 56. | |
141. | Jones S., Thornton, M.J. Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 1997, 1-12. | |
142. | Afsar Minhas, F. U. A.; Geiss, B. J.; Ben-Hur A. PAIRpred: Partner specific prediction of interacting residues from sequence and structure. Prot. Struct. Funct. Bioinf. 2013, 82, 1142-1155. | |
143. | Xue, L. C.; Dobbs, D.; Bonvin, A. M. J. J.; Honavar, V. Computational prediction of protein interfaces: A review of data driven methods. FEBS Letters. 2015, 589, 3516-3526. | |
144. | Lovell, S.C.; Davis, I. W.; Arendall, W. B.; de Bakker, P. I.; Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003, 50, 437-450. | |
145. | An example of Ramachandran contour levels and colors. | |
146. | Guba, W.; Meyder, A.; Rarey, M.; Hert, J. Torsion library reloaded: A new version of expert-derived SMARTS rules for assessing conformations of small molecules. J. Chem. Inf. Model. 2016, 56, 1-5. | |
147. | Pennington, L. D.; Aquila, B. M.; Choi, Y.; Roman A. Valiulin, R. A.; Muegge, I. Positional Analogue Scanning: An effective strategy for multiparameter optimization in drug design. J. Med. Chem. 2020, 63, 17, 8956 - 8976 | |
148. | Positional Analogue Scanning. | |
149. | Smith, D. G. A. et. al. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020, 52, 184108. | |
150. | Rai, B. K.; Sresht, V.; Yang, Q.; Unwal la, R.; Tu, M.; Mathiowetz, A. M.; Bakken, G. A. Comprehensive assessment of torsional strain in crystal structures of small molecules and protein-ligand complexes using ab Initio calculations. J. Chem. Inf. Model. 2019, 59, 10, 4195-4208. | |
151. | Morell, C.; Grand, A.; Toro-Labbe, A. New dual descriptor for chemical reactivity. J. Phys. Chem. 2005, 109, 205-212. | |
152. | Scharfer, C.; Schulz-Gasch, T.; Ehrlich, H-C.; Guba, W.; Rarey, M.; Stahl. Torsion angle preferences in druglike chemical space: A comprehensive guide. J. Med. Chem. 2013, 56, 2016-2028. | |
153. | Gu, S.; Smith, M. S.; Yang, Y.; Irwin, J. J.; Shoichet, B. K. Ligand Strain Energy in Large Library Docking. J. Chem. Inf. Model. 2021, 61, 4331-4341. | |
154. | Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. hem. Rev. 1994, 94, 7, 1887-1930. | |
155. | Hohenstein, E. G.; Sherrill, C. D. Wavefunction methods for noncovalent interactions. WIREs Comput. Mol. Sci. 2012, 2, 304-326. | |
156. | McGibbon, R. T.; Taube, A. G.; Donchev, A. G.; Siva, K.; Fernandez, F.; Hargus, C.; Law, K.-H.; Klepeis, J. L.; Shaw. D. E. Improving the accuracy of Moller-Plesset perturbation theory with neural networks. J. Chem. Phys. 2017, 147, 161725. | |
157. | Li, A.; Muddanaand, H. S.; Gilson, M. K. Quantum mechanical calculation of noncovalent interactions: A large-scale evaluation of PMx, DFT, and SAPT approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575. | |
158. | Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269-10280. | |
159. | Penner, P.; Guba, W.; Schmidt, R.; Meyder, A.; Stahl, M.; Rarey, M. The torsion library: Semiautomated improvement of torsion rules with SMARTScompare. J. Chem. Inf. Model. 2022, 62, 1644-1653. | |
160. | Cances, E.; Maday, Y.; Stamm, B. Domain decomposition for implicit solvation models. J. Chem. Phys. 2013, 139, 054111. | |
161. | Stamm, B.; Cances, E.; Lipparini, F.; Maday, Y.; A new discretization for the polarizable continuum model within the domain decomposition paradigm. J. Chem. Phys. 2016, 144, 054101. | |
162. | Klamt, A.; Schuurmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 1993, 5, 799. | |
163. | Lipparini, F.; Scalmani, G.; Lagardere, L.; Stamm, B.; Cances, E.; Maday, Y.; Piquemal, J.-P.; Frisch, M.; Mennucci, B. Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. J. Chem. Phys. 2014. 141, 184108. | |
164. | Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 8, 2999-3094. | |
165. | Nottoli, M.; Stamm, B.; Scalmani, G.; Lipparini, F. Quantum calculations in solution of energies, structures, and properties with a domain decomposition polarizable continuum model. J. Chem. Theory Comput. 2019, 15, 6061. | |
166. | Guilloux V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics. 2009. | |
167. | Wang, S.; Witek, J.; Landrum, G. A.; Riniker, S. Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences. J. Chem. Inf. Model. 2020, 60, 2044-2058. | |
168. | Trott, O.; and Arthur J. Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 454-461. | |
169. | Eberhardt, J.; Diogo Santos-Martins,D.; Tillack, A. T.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891-3898. | |
170. | Quiroga, R.; Villarreal, M. A. Vinardo: A Scoring function based on Autodock Vina improves scoring, docking, and virtual screening. PLoS One 2016, 11. | |
171. | Probst, D.; Jean-Louis Reymond, J-L. Visualization of very large high-dimensional data sets as minimum spanning trees. J. Cheminformatics. 2020, 12. | |
172. | Probst, D.; Jean-Louis Reymond, J-L. FUn: a framework for interactive visualizations of large, high-dimensional datasets on the web. Bioinformatics. 2018, 1433-1435. |